

Figure 3. Titration of (N-CH,TPP)CoCl with 1-methylimidazole (solvent CDCl₃, concentration of complex 12.8 mM, 25 °C). Concentration of 1-methylimidazole: (A) 0; (B) 0.45 M; (C) 0.6 M; (D) 2 M. Abbreviations: p, pyrrole resonances of 1; p_1 , pyrrole resonances of 3. The remaining part of the spectrum is obscured by I-MeIm resonances.

The plots of shift vs. T^{-1} for 1 (Figure 2) and 2 present a noticeable deviation from Curie law, particularly for pyrrole and NCH₃ resonances (extrapolated intercepts for pyrroles are 3.09, -8.3 , 0.1, and -3.2 ppm and 41.5 ppm for NCH₃). This clearly implies the existence of thermal equilibrium between closely situated electronic states of high-spin $Co(II).^{1,18}$ The methylated nitrogen is approximately sp^3 hybridized;¹ therefore only a σ delocalization mechanism is available for the N-methyl group. For this type of delocalization one would expect to observe a large downfield shift¹⁹ for the methyl resonance. The observed large upfield shift of the N-methyl group is consistent only with a predominant dipolar contribution to the isotropic shift.

When axial symmetry geometric factors are used to account roughly for dipolar shifts of the phenyl resonances, good linear correlations with isotropic shifts are achieved for several different orientations of the main magnetic axis. Therefore, its exact orientation remains unknown and the separation of the dipolar and contact shifts will require further detailed study of the magnetic tensor orientation and components.

The experimental line width ratios $1:1.18:1.14:1.25$ (-60 °C) for $H_b:H_c:H_d:H_a$ protons respectively are slightly different from those theoretically predicted on the basis of the dominating dipolar contribution to the relaxation mechanism,⁷ i.e. $1:1.08:1.123:1.25$ $(r⁻⁶$ values were calculated from the crystallographic data¹). However, the considerably large differences between experimental and theoretical values have been observed at 20 °C. Due to the specific orientational dependence of the magnetic susceptibility tensor, an angular dependence of T_1 and T_2 can account for the difference.^{21,22} This angular dependence is usually neglected for regular porphyrins **as** all pyrrole protons have a similar orientation with respect to the main magnetic axis. The tentative assignment of pyrrole resonances is presented in Figure 1.

The thermodynamic parameters for rotation of the phenyl groups of 1 were determined by ¹H NMR. Similar ΔG^* values for both (nonequivalent by geometry) sets of phenyl groups were determined on the basis of \ln (line width) = $f(T^{-1})$ analysis.²³ The

- (15) Boersma, A. D.; Goff, H. M. *Inorg. Chem.* **1982,** 21, 476.
- (16) Bonnet, **R.;** Gale, I. A. D.; Stephenson, G. F. *J. Chem.* **SOC.** *C* **1967,** 1169.
- (17) Smith, **K.,M.,** Ed. "Porphyrins and Metalloporphyrins"; Elsvier: New York, 1975; p 816.
-
- (18) McGarvey, B. R. J. Chem. Phys. 1970, 53, 86.

(19) (N-CH₃TPP)FeCl⁶ and (N-CH₃TPP)NiCl²⁰ demonstrated the N-CH₃

resonance at 149 ppm (-50 °C) and 177.8 ppm (-60 °C), respectively.

(20) Latos-Grazyński, L.,
-
- 3133.
- (23) Satterlee, **J.** D.; La Mar, G. N.; Bold, T. **J.** *J. Am. Chem.* **SOC. 1977, 99,** 1088.

following values have been found $(CDCl₃$ solution): $o₁$ proton, $\Delta H^* = 9.0 \pm 0.4$ kcal, $\Delta S^*/R = -13.2 \pm 0.6$, $\Delta G^*_{298} = 16.9 \pm 0.6$ 0.8 kcal; o_2 proton, $\Delta H^* = 11.4 \pm 0.6$ kcal, $\Delta S^*/R = -8.5 \pm 1.0$, ΔG^*_{298} = 16.5 \pm 1.3 kcal. The measured values are similar to those reported previously for a large variety of non-N-substituted tetraphenylporphyrins and their complexes (meso-tetrakis(ohydroxyphenyl)porphyrin,²⁴ $\Delta G^*_{298} = 24$ kcal; (TPP)Ni^{II}, ΔG^*_{463} $>$ 26 kcal;²⁵ TPP complexes of ruthenium, titanyl, and indium,²⁶ ΔH^* = 11.2-17.5 kcal, $\Delta S^*/R$ = -3.7 to -12.4, ΔG^*_{298} = 14.3-18.6 kcal). The different positions of phenyls with respect to the N-methyl-substituted pyrrole ring are probably responsible for differences in the respective ΔH^* and ΔS^* values.

The addition of 1-methylimidazole to **1** resulted in the formation of a new set of resonances corresponding to the five-coordinate species (N-CH₃TPP)Co^{II}(1-MeIm) (3) (Figure 3). The stability constant calculated from the pyrrole intensity ratio analysis equals 2.1 M (25 \degree C, CDCl₃), which remains in good agreement with reported values for other high-spin Co(II) complexes.^{27,28} The resonances of the coordinated -MeIm have not been observed due to the fast exchange with uncoordinated ligands.

The identity of observed pyrrole resonances has been confirmed by the spectrum of $(N\text{-}CH_3TPP-d_8)Co(1\text{-}MeIm)$. The spread of pyrrole resonances increases upon 1-MeIm coordination probably due to the preferred orientation of the 1-MeIm plane, which leads to preferential π spin density distribution.³¹

Other paramagnetic complexes with less pronounced dipolar contributions are being studied in order to elucidate the spin density distribution and spin-transfer mechanism.

Acknowledgment. This work was supported by the Polish Academy of Sciences **(MR** 1.9 project).

Registry **No. 1,** 51552-52-4; **2,** 94499-87-3; 3, 94499-88-4; 1-MeIm, 616-47-7.

- (24) Gottwald, L. K.; Ullman, E. F. *Tetrahedron Lett.* **1969,** 3071.
- (25) Walker, F. A. *Tetrahedron Lett.* **1971,** 4949.
- (26) (a) Eaton, **S. S.;** Eaton, G. R. *J. Am. Chem.* **SOC. 1975,97,** 3660. (b)
- Eaton, **S. S.;** Eaton, G. **R.** J. *Am. Chem.* **SOC. 1977, 99,** 6594. (27) Chmielewski, P. Ph.D. Thesis, University of Wroclaw, 1984.
- (28) One has to note that UV spectra of N-alkylporphinato complexes are barely sensitive to the ligation state of the metal ion.²⁹ NMR and ESR spectroscopy make it possible to study such equilibria.³⁰
- (29) Lavallee, D. K. *Bioinorg. Chem.* **1976,** *6,* 219.
- (30) Latos-Gratyfiski, L.; Jezierski, A. *Inorg. Chim. Acta,* in press.
- (31) Walker, F. A.; Buehler, **J.;** West, **J.** T.; Hinds, **J.** L. *J. Am. Chem. Soc.* **1983,** 105,6923.

Contribution from the Department of Chemistry, The University, Southampton **SO9** SNH, U.K.

Coordination Chemistry of Higher Oxidation States. 12.' Synthesis and Complexes of the Bis(phosphine) 1,2-Bis(dimethylphosphino)-3,4,5,6-tetrafluorobenzene, $o - C_6F_4(PMe_2)$ ₂

Simon J. Higgins and William Levason*

Received July *11, 1984*

Recent studies^{$2-5$} have shown that ligands of the type o - $C_6H_4(EMe_2)(E'Me_2)$ (E, E' = P, As, Sb) (L-L) are particularly effective at stabilizing high formal oxidation states of the transition

- (1) Part 11: Gary, L. **R.;** Higgins, **S.** L.; Levason, W.; Webster, M. *J. Chem. Soc., Dalton Trans.* **1904,** 1433.
-
- (2) Warren, L. F.; Bennett, M. A. *Inorg. Chem.* **1976,** 15, 3126. (3) Gray, L. R.; Gulliver, D. **J.;** Levason, W.; Webster, M. *J. Chem. Soc., Dalton Trans.* **1983,** 133.
- (4) Gray, L. R.; Higgins, **S.** J.; Levason, W.; Webster, **M.** *J. Chem. SOC.. Dalton Trans.* **1984,** 459.
- (5) Higgins, **S. J.;** Levason, W., unpublished work.

metals, $[M(L-L)_{2}X_{2}]^{n+}$ (X = Cl, Br), where M for example is $Ni(III)$, $Ni(IV)$, $Pd(IV)$, or $Fe(IV)$. This has been attributed to the combination of good σ donor properties and small steric requirements, while the rigid $o - C_6H_4$ - backbone resists dissociation from the metal. However, as always, clarification of the relative importance of steric and electronic properties is difficult, and in order to probe these effects further we have synthesized the new ligand⁶ o -C₆F₄(PMe₂)₂ (F-diphos), which has very similar steric properties to o -C₆H₄(PMe₂)₂(diphos) but is expected to be a weaker σ donor to the $-I$ effect of the fluorines. It has been previously found that in normal oxidation state chemistry, ligands with hydrocarbon and fluorocarbon backbones behave in significantly different ways: e.g., o -C₆H₄(PPh₂)₂ readily forms fivecoordinate $[Ni(L-L),X]^+$ ions,⁷ but α -C₆F₄(PPh₂), does not,⁸ while S-demethylation at Ni(I1) or Pd(I1) is much more facile in *o-* $C_6F_4(PPh_2)(SMe)$ than in $o-C_6H_4(PPh_2)(SMe).⁹$

Experimental Section

Details of the techniques and instrumentation are given in previous parts of this series. ³¹P(¹H) NMR spectra were recorded on a Bruker AM 360 spectrometer. Shifts are relative to 85% H_3PO_4 -high-frequency positive δ scale.

 o -C₆F₄(PMe₂)₂. Under nitrogen, the apparatus consisting of a 250cm³ three-necked flask, fitted with nitrogen inlet, "Suba seal" septum cap, and reflux condenser, was charged with dry diethyl ether **(100** cm3) and **1,2-dibromotetrafluorobenzene** (5 g, 0.016 mol). The mixture was cooled to -85 °C and *n*-BuLi (10.9 cm³ of a 1.49 M solution) added dropwise via a syringe over a period of ca. 20 min. After warming to -20 °C for 5 min, the mixture was cooled to -85 °C and Me₂PCI (1.56 g, 0.016 mol) added slowly via a syringe, the mixture becoming red in color. After stirring for 30 min, the mixture was allowed to warm to room temperature. The mixture was cooled again to -85 °C and treated successively with n -BuLi (11 cm³) and Me₂PCl (1.7 g) and allowed to warm over ca. 1 h. Hydrolysis was effected with deoxygenated aqueous NH4CI solution (35 cm³) at 0° C, the organic layer separated, and the aqueous layer extracted with diethyl ether (25 cm^3) , and the combined organic layers were dried (Na_2SO_4) . The ether was distilled off and the residue fractionated in vacuo. After a short forerun (bp 51-54 "C (0.4 mmHg)) the main fraction boiled at 60-85 °C (0.5 mmHg); 1.9 g (43%). Redistillation gave bp 73 °C (0.5 mm). Mass spectrum: m/z 270 (11, P⁺), 255 (100, P - Me⁺), 240 (23, P - 2 Me⁺). ¹H NMR [(CD₃)₂SO]: δ 1.50 (m). ${}^{31}P{'}^{1}H{};$ δ -39.9. ${}^{19}F{'}^{1}H{}$ [(CD₃)₂SO]: δ 8.75 (m), 32.3 (m) (relative to C_6F_6).

Methiodide. $o - C_6F_4(PMe_2)_2$ (0.135 g, 0.5 mmol) was added to a warm acetone solution (30 cm^3) of MeI $(0.3 \text{ g}, 2 \text{ mmol})$. The solvent was evaporated in vacuo and the white product recrystallized from acetone/diethyl ether. Anal. Calcd for $C_{11}H_{15}F_4IP_2$: C, 32.0; H, 3.7. Found: C, 31.8; H, 3.7. Mp: 174-177 °C (dec.) ¹H NMR [(CD₃)₂SO]: δ 1.4 (d, $J = 5$ Hz, 6 H), 2.28 (d, $J = 14$ Hz, 9 H) (both show evidence of further coupling under high resolution). ${}^{31}P(^{1}H)$: $\delta + 31.75$ (Me₃P⁺-), -34.6 (Me₂P-)

Dichlorobis[1,2-bis(dimethylphosphino)-3,4,5,6-tetrafluorobenzene]nickel(II), $[Ni[0-C_6F_4(PMe_2)_2]_2Cl_2$. The ligand (0.27 g, 1.0 mmol) was added to a deoxygenated solution of $Ni(H_2O)_6Cl_2$ (0.12 g, 0.5 mmol) in ethanol (40 cm^3) and the mixture refluxed for 5 min, cooled, and concentrated to ca. 5 cm³. Diethyl ether (30 cm³) was added with rapid stirring and the mixture cooled to -20 °C overnight. The resulting green precipitate was filtered off, washed with diethyl ether (5 cm³), and dried in vacuo; 0.073 g (22%). After the filtrate was concentrated and cooled, dark orange crystals were obtained, which were isolated in a similar manner; 0.098 g (29%).

Data for the green form: Anal. Calcd for $C_{20}H_{24}Cl_2F_4NiP_4$: C, 35.9; H, 3.6. Found: C, 35.7; H, 3.7. Electronic spectrum (diffuse reflectance; 10³ cm⁻¹): 13.9, 15.1, 16.6 sh, 24.9, 30.7.

Data for the orange form: Anal. Found: C, 35.4; H, 3.5. Electronic spectrum (CH₂Cl₂ solution; 10³ cm⁻¹ (ϵ_{mol} , dm³ cm⁻¹ mol⁻¹)): 24.3 (900), 32.3 (3800); (diffuse reflectance) 21.2 sh, 23.4. $[Ni[0-C_6F_4 (PMe_2)_2|_2Br_2]$ was isolated in a similar manner as orange-brown crystals,

0.322 g (85%). Anal. Calcd for $C_{20}H_{24}Br_2F_4NiP_4$: C, 31.7; H, 3.2. Found: C, 32.0; H, 3.2. Electronic spectrum (CH₂Cl₂ solution; 10^3 cm⁻¹ $(\epsilon_{\text{mol}}, \text{dm}^3 \text{ cm}^{-1} \text{ mol}^{-1})$: 20.5 sh, 25.3 (1030), 30.5 (6300); (diffuse reflectance) 19.3 sh, 24.2, 26.5, 30.3.

Bis[1,2-bis(dimethylphosphino)-3,4,5,6-tetrafluorobenzene]nickel(II) **Perchlorate.** [Ni[o-C₆F₄(PMe₂)₂]₂](ClO₄)₂. The ligand (0.54 g, 2 mmol) was syringed into a warm solution of $[Ni(H_2O)_6](ClO_4)_2$ (0.4 g, 1.1) mmol) in propan-1-ol (50 cm^3) with stirring, and a yellow precipitate appeared immediately. This was filtered off, washed with propan-2-01 and diethyl ether, and dried in vacuo. It was recrystallized from acetonitrile/propan-2-ol $(1/1 \text{ v/v})$; 0.71 g (89%) . Anal. Calcd for $C_{20}H_2A_1C_1F_8NiO_8P_4$: C, 30.1; H, 3.0. Found: C, 30.5; H, 3.0. ¹H NMR $[(CD₃)₂SO]$: δ 2.22 (br s).

Dichlorobis[1,2-bis(dimethylphosphino)-3,4,5,6-tetrafluorobenzene]**nickel(III)** Perchlorate, [Ni[o-C₆F₄(PMe₂)₂]₂Cl₂](ClO₄). To a solution of $[Ni[o-C_6F_4(PMe_2)_2]_2Cl_2]$ (0.065 g, 0.1 mmol) and LiClO₄ (0.01 g, 0.1) mmol) in ethanol $(25 \text{ cm}^3)/\text{MeCN}$ (7 cm³) was added a small excess of $Cl₂/₄$ solution, to produce a grass green solution. This was concentrated in vacuo to yield a green precipitate that was filtered off, rinsed with cold propan-2-01 and diethyl ether, and dried in vacuo; 0.05 g (78%). Anal. Calcd for $C_{20}H_{24}Cl_3F_8NiO_4P_4$: C, 31.2; H, 3.15. Found: C, 31.4; H, 3.3. IR $\nu(Ni-Ci) = 235$ cm⁻¹. Electronic spectrum (MeCN solution; 10³ cm⁻¹ (ϵ_{mol} , dm³ cm⁻¹ mol⁻¹)): 14.53 (130), 27.8 (14 500). Magnetic moment (Evans' method, MeCN): $1.94 \mu_B$. [Ni[o-C₆F₄(PMe₂)₂]Br₂]-ClO₄ was made similarly from $[N[(o-C_6F_4(PMe_2)_2]_2Br_2]$, LiClO₄ (1/1) mole ratio), and Br_2 in ethanol and isolated as a brick red solid, 88%. Anal. Calcd for $C_{20}H_{24}Br_2ClF_8NiO_4P_4$: C, 28.0; H, 2.8. Found: C, 28.2; H, 2.8. IR: $v(Ni-Br) = 183$ cm⁻¹. Electronic spectrum (MeCN; 10^3 cm⁻¹ (ϵ_{mol} , dm³ cm⁻¹ mol⁻¹)): 14.28 (42), 21.20 (800), 27.30 (4750). Magnetic moment (Evans' method, MeCN): $1.98 \mu_B$.

Dichlorobiql,2-bis(dimethylphosphino)-3,4,5,6-tetrafluorobenzene] p alladium(II), $[Pd[o-C_6F_4(PMe_2)_2]_2Cl_2]$. The ligand (0.27 g, 1 mmol) was added to a gently refluxing solution of $Na₂PdCl₄$ (0.15 g, 0.5 mmol) in ethanol (40 cm^3) . After the mixture was stirred for 1 h, the solvent was removed and the residue recrystallized from $CH_2Cl_2/diethyl$ ether; 0.27 g (75%). Anal. Calcd for $C_{20}H_{24}Cl_2F_4P_4Pd$: C, 33.5; H, 3.3. Found: C, 32.9; H, 3.1. Electronic spectrum (diffuse reflectance; 10^3 cm⁻¹): 25.6 sh, 29.4 sh, 31.7. ¹H NMR spectrum [(CD₃)₂CO]: δ 2.20 (br)

Dichlorobis[1,2-bis(dimethylphosphino)-3,4,5,6-tetrafluorobenzene] p alladium(IV) Perchlorate, $[\overrightarrow{Pd}(\overrightarrow{o}-\overrightarrow{C}_6\overrightarrow{F}_4(\overrightarrow{PMe}_2)_2]_2Cl_2]$ (ClO₄)₂. [Pd[\overrightarrow{o} - $C_6F_4(PMe_2)_2|_2Cl_2$] (0.36 g, 0.5 mmol) was dissolved in the minimum volume of concentrated $HNO₃$ at 0 °C with magnetic stirring, giving a deep yellow solution. The product was precipitated by the slow dropwise addition of chilled 70% $HClO₄ (CARE)¹⁰$ as a yellow solid, filtered, washed with 10% HClO₄, and dried in vacuo; 0.34 g (76%). Anal. Calcd for C20H24C14F808P4Pd: C, 26.2; H, 2.6. Found: C, 26.4; **H,** 2.7. IR: $\nu(Pd-CI) = 380 \text{ cm}^{-1}$. Electronic spectrum (CF₃CO₂H; 10³ cm⁻¹ (ϵ_{mol} dm³ cm⁻¹ mol⁻¹)): 24.51 (ca. 1800).

Dichlorobis[1,2-bis(dimethylphosphino)-3,4,5,6-tetrafluorobenzene]co**balt(III) Chloride, [Co[o-$C_6F_4(PMe_2)_2$]cI₂]Cl. The ligand (0.27 g, 1** mmol) was added to a solution of $[Co(H_2O)_6]Cl_2$ (0.12 g, 0.5 mmol) in warm propan-2-ol (20 cm³). After the mixture was cooled to room temperature, light green crystals precipitated. These were rinsed with diethyl ether and dried in vacuo. They were finely powdered, suspended in dry $CCl₄$ (ca. 5 cm³), and treated with a small excess of chlorine. After the mixture was allowed to stand for 2 h, the resulting light purple powder was filtered off, washed with CCI_4 (10 cm³), and dried in vacuo; 0.2 g (50%). Anal. Calcd for $C_{20}H_{24}Cl_3CoF_8P_4$: C, 34.1; H, 3.4. Found: C, 34.3; H, 3.4. IR: ν (Co–Cl) = 399 cm⁻¹. Electronic spectrum (MeCN; 10^3 cm⁻¹ (ϵ_{mol} , dm³ cm⁻¹ mol⁻¹)): 17.86 (100), 27.17 (3240).

Dichlorobis^{[1,2-bis(dimethylphosphino)-3,4,5,6-tetrafluorobenzene]-} **iron(II1) Tetrafluoroborate.** The ligand (0.27 g, 1 mmol) was added to a solution of anhydrous FeCl₃ (0.195 g, 1.2 mmol) in ethanol (25 cm³) with stirring. The red precipitate was filtered off and air-dried. It was then dissolved in acetone (20 cm³), and tetrafluoroboric acid (5 cm³, 30%) by volume) was filtered into the solution. After concentration to ca. 15 cm3, dark red crystals precipitated. These were filtered off and dried in vacuo; 0.3 g (40%). Anal. Calcd for $C_{20}H_{24}BCl_2F_8FeP_4$: C, 35.4; H, 3.6. Found: C, 35.3; H, 3.6. IR: $\nu(Fe-CI) = 382 \text{ cm}^{-1}$. Electronic spectrum (MeCN; 10³ cm⁻¹ (ε_{mol}, dm³ cm⁻¹ mol⁻¹)): 18.18 (2150), 26.88 sh (780), 29.24 (4400). Magnetic moment (Evans' method, $CH₃CN$): 2.21 μ_B .

The syntheses of the corresponding complexes of $o\text{-}C_6H_4(PMe_2)_2$ have been described elsewhere.²⁻⁴

⁽⁶⁾ A preliminary communication on o -C₆F₄(AsMe₂)₂ appeared in 1966, but details of the complexes unfortunately have not appeared. Duffy, N. **V.;** Layton, A. J.; Nyholm, R. S.; Powell, D.; Tobe, M. L. *Nature (London)* **1966, 221,** 177.

⁽⁷⁾ Levason, W.; McAuliffe, C. A. *Inorg. Chim. Acta* **1974,** *11, 33.* (8) Eller, P. G.; Meek, **D. W.** *Inorg. Chem.* **1972,** *11,* 2518.

⁽⁹⁾ Eller, P. *G.:* Riker, J. M.; Meek, D. **W.** *J. Am. Chem. Soc.* **1973,** *95,* **3540.**

⁽¹⁰⁾ Metal perchlorate complexes are often explosive and due care should be taken. Attempts to obtain this material with $CF₃SO₃$ as counteranion failed, and BF_4^- and PF_6^- gave materials with poor analyses.

Table I. Redox Potentials4

~0.01 **V in MeCN with** 0.1 **M n-Bu,NBF,** as **supporting electrolyte;** carbon **electrodes vs. standard calomel electrode.**

scheme I

Results and Discussion

The ligands o -C₆H₄(EMe₂)(E'Me₂) are made by reaction of EMe_2^- nucleophiles with α -C₆H₄Cl₂ (E = E') or α -C₆H₄Br- $(E'Me_2)$,¹¹ but an analogous route cannot be used for the title ligand since the C-F **bonds** are attacked.12 F-diphos was obtained as in Scheme I in ca. 43% yield, as a colorless oil that is less air sensitive than $o\text{-}C_6H_4(PMe_2)_2$.

The $3^{1}P$ NMR resonance in F-diphos (-39.9 ppm) is shifted ca. 16 ppm to high frequency from that in diphos (-56 ppm) ,¹¹ and since the bond angles at P are assumed to be very similar, this indicates significant electron density changes at the phosphorus.

The Ni(II), Co(III), and Fe(II1) complexes of F-diphos (Experimental Section) are generally similar to their diphos analogues, the most notable difference being that while diphos only gives the planar solid Ni(diphos)₂Cl₂,² Ni(F-diphos)₂Cl₂ can be obtained as both brown-planar (P_4) and green pseudooctahedral (P_4Cl_2) forms. Both dissolve in polar solvents to give a mixture of $[Ni(F-diphos)_2]^{2+}$ and $[Ni(F-diphos)_2Cl]^+$. Moreover, the ready synthesis of relatively stable $[{\rm Pd}^{\rm IV}({\rm F-diphos})_2Cl_2]$ (ClO₄)₂ and $[Ni^{III}(F-diphos)₂X₂]ClO₄²⁻⁴ shows the ability of the ligand to$ stabilize high oxidation states. In order to probe differences between F-diphos and diphos complexes we have used cyclic voltammetry.¹³ As shown in Table I the F-diphos complexes of Ni(II1) and Fe(II1) are much **less** readily oxidized to the M(1V) voltammetry.¹³ As shown in Table I the F-diphos complexes of Ni(III) and Fe(III) are much less readily oxidized to the M(IV) states than those of diphos, while the oxidation of Fe(II) \rightarrow Fe(III) is accepted than the p states than those of diphos, while the oxidation of $Fe(II) \rightarrow Fe(III)$
is considerably harder with F-diphos. The Ni(II) \rightarrow Ni(III) potentials are less strictly comparable; unlike the other systems they are not electrochemically reversible, **as** they involve a change in coordination number (4 or 5 in Ni(II), 6 in Ni(III)). Similar trends are present in the corresponding bromide complexes.⁵ It is notable that the redox potential differences between corresponding F-diphos and diphos complexes are much greater than between those of diphos and $o-C_6H_4(AsMe_2)_2^{2,5}$

Conclusions

The electrochemical data demonstrate that diphos and F-diphos have significantly different abilities to stabilize high oxidation states, reflecting different electronic properties. Since both have excellent coordinating abilities toward transition-metal ions, they offer a means of probing (or modifying) the electronic effects, while steric changes are minimized, and hence should be valuable

- **Levaeon, W.; Smith, K. G.; McAuliffe, C. A.; McCullough, F. P.; Sedgwick, R. D.; Murray, S. G.** *J. Chem. Soc., Dalton Trans.* **1979, 1718.**
- $o\text{-}C_6H_4(PPh_2)$ is conveniently made from $o\text{-}C_6H_4F_2$ and PPh₂⁻ in liquid NH₃ (a) or THF (b): (a) McFarlane, H. C. E.; McFarlane, W. Polyhedron **1983**, 2, 303. (b) Higgins, S. J., unpublished results.
- **Analysis of the electronic spectra is precluded since an insufficient number of metal-centered transitions (d-d bands) are resolved, due to the presence of charge-transfer transitions at low energy in the high oxidation state complexes.**

in a wide range of **coordination/organometallic** systems.

Acknowledgment. We thank the SERC for financial support and Dr. D. Pletcher and D. J. Pearce for assistance with the electrochemical measurements.

Me₂PCl, 811-62-1; o-C₆F₄(PMe₂)₂ methiodide, 95045-53-7; [Ni[o-C₆F₄(PMe₂)₂]2]Cl₂, 95045-68-4; $[Ni[o-C_6F_4(PMe_2)_2]_2Br_2]$, 95045-55-9; $[Ni[o-C_6F_4(PMe_2)_2]_2(CIO_4)_2$, **95045-57-1; [Ni[~-c~F,(PMe~)~]~cl~] (c104), 95045-59-3; [Ni[0-CgF4- (PMe2)2]2Br2] (c104), 95045-6 1-7; [P~[C-C~F,(PM~~)~]~C~~], 95045-62-** 8; [Pd[o-C₆F4(PMe₂)₂]2Cl₂](ClO₄)2, 95045-64-0; [Co[o-C₆F4-
(PMe₂)₂]2Cl₂]Cl, 95045-65-1; [Fe[o-C₆F₄(PMe₂₎₂]2Cl₂](BF₄), 95045-**95045-70-8;** [Ni[o-C₆F₄(PMe₂)₂]₂Cl₂]²⁺, **95045-71-9. Registry No.** o -C₆F₄(PMe₂)₂, 95045-52-6; o -C₆F₄(Br)₂, 827-08-7; **67-3; [Fe [c+C6F4(PMe2) 112C12], 95045-69-5;** [**Fe** [**0-C6F4(PM%)** 21 **zClz]** '+,

> Contribution from the Department of Chemistry, University of Colorado, **Boulder,** Colorado **80309**

Synthesis of (Trimethylsily1)- and **(Trimethy1germyl)allylphosphine**

David M. Schubert and Arlan D. Norman*

Received August, 22, *1984*

Trialkylsilyl-substituted phosphines [e.g. [(CH3),- $\{Si\}_{3-m+n}P(H)_mR_n$; $m + n = 1$, 2; R = an organo moiety] are valuable synthons for the preparation of new organophosphorus and organophosphorus-metal compounds. Recent examples include the syntheses of novel nickel- and cobalt-phosphorus cluster complexes¹ and primary and secondary organophosphines^{2,3} such respectively. In the former case, advantage is taken of facile Si-P bond cleavage in $[(CH₃)₃Si]₂PC₆H₅$ by metal halides. In the latter case, since Si-P bonds resist radical reaction, a two-step synthesis involving initial addition of $(CH_3)_3SiPH_2$ to the olefin followed by hydrolytic removal of $(CH₃)₃Si$ groups can be exploited. as $\{CO_4(\mu_3\text{-}PC_6H_5)_{4}[P(C_6H_5)_3]_{4}\}$ and $\{ (C_6H_5)_2PCH_2CH_2]_{2}PH$,

Previous syntheses of $(CH₃)₃Si-substituted organophosphines$ have been limited to cases where $R =$ alkyl and aryl; only recently have four-carbon or greater alkenyl-substituted compounds been prepared.^{2,3} Lower homologues, e.g. $(CH_3)_3$ SiP(H)CH₂CHCH₂, could not be prepared. We have now investigated alternate syntheses of these and find that (CH_3) ₃SiI or (CH_3) ₃GeBr with $CH_2CHCH_2PH_2$ in the presence of $(C_2H_5)_3N$ yield the new (trimethylsily1)- and **(trimethylgermy1)allylphosphines.** This work is described below.

Results and Discussion

Trimethyliodosilane and $(CH_3)_3GeBr$ react with CH_2CHC - H_2PH_2 in CH₂Cl₂ in the presence of $(C_2H_5)_3N$ to afford the unsymmetrically substituted (sily1)- and (germyl)allylphosphines, $(CH₃)₃SiP(H)CH₂CHCH₂ (1)$ and $(CH₃)₃GeP(H)CH₂CHCH₂$ (3), respectively (eq 1). Reactions involve initial adduct formation $(CH_3)_3EX + CH_2CHCH_2PH_2 + (C_2H_3)_3N \rightarrow$

$$
(CH3)3EX + CH2CHCH2PH2 + (C2H3)3N \rightarrow
$$

(CH₃)₃EP(H)CH₂CHCH₂ + (C₂H₃)₃NHX (1)
E, X = Si, I; Ge, Br

⁽¹⁾ Fenske, D.; Basoglu, R.; Hachgenei, J.; Rogel, F. *Angew. Chem., In?. Ed. End.* **1984.** *23.* **160.**

⁽²⁾ Schubert, D. M. Ph.D. Thesis, University of Colorado, 1983.
(3) Schubert, D. M.: Norman, A. D. *Inore, Chem.* **1984**, 23, 413

⁽³⁾ Schubert, D. M.; Norman, A. D. *Inorg. Chem.* **1984,** *23,* **4130.**